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By HIDEAKI MIYATA AND SHINICHI NISHIMURAt 
Department of Naval Architecture, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113 

(Received 30 April 1984 and in revised form 28 January 1985) 

A finite-difference solution method for nonlinear wave generation in the near field 
of ships of arbitrary three-dimensional configuration is developed. Momentum 
equations of finite-difference form in a fixed rectangular cell system are solved by 
a time-marching scheme. The exact inviscid free-surface condition is approximately 
satisfied at the actual location of the free surface, and the free-slip body boundary 
condition is implemented by use of approximation of the body configuration and 
a special pressure computation in body boundary cells. The degree of accuracy is 
raised by employing a variable-mesh system in the vertical direction. Computed 
results are presented for three hull forms: a mathematical and two practical hull forms. 
Agreement with experiment seems to be fairly good. In  particular, the computed 
wave profiles and contour maps of bow waves show excellent resemblance to the 
measured ones, having some typical characteristics of nonlinear ship waves. 

1. Introduction 
Ships advancing on a steady straight course generate waves and suffer wave 
resistance. For high-speed ships more than half of the resistance is wave resistance, 
and a small modification in ship hull configuration gives rise to a remarkable increase 
or decrease of wave resistance. A properly designed bow bulb, for instance, can reduce 
it by 50 %. This is why the problem of ship hull configuration of minimum wave 
resistance has attracted the attention of researchers in the field of hydrodynamics 
and applied mathematics for almost a hundred years. 

Many wave-resistance theories have been proposed. It is almost impossible to count 
the number of papers that deal with wave-resistance problems of ships. However, the 
prediction of ship waves and wave resistance is not yet satisfactory. Theories so far 
developed can be relied on only when reinforced by the accumulated experimental 
results and the heuristic knowledge of designers. The inadequacy of the theories is 
assumed to result from the linearizing assumptions of the problem. In particular the 
linearization of the free-surface condition may not be appropriate for waves that show 
remarkable nonlinear characteristics, such as those generated by a blunt bow. An 
exceptional case is the Rankine source method by Gadd (1976), which is a kind of 
boundary-element method that satisfies the nonlinear free-surface condition on the 
exact location of the free surface. Another approach is to model the nonlinear 
behaviour of bow-waves, for instance the jet flow model by Dagan & Tulin (1972), 
but this kind of approach still needs much more refinement to attain the goal of 
the prediction of ship wave resistance. 

The nonlinearity of ship waves has been experimentally investigated by many 

t Present Address: Mitsubishi Heavy Industries, Kobe Shipyard, Wadamisaki, Hyogo-ku, 
Kobe 652. 



328 H .  Miyata and S. Nishimura 

researchers. Baba (1969) found the importance of the wave-breaking phenomenon, 
and Taneda (1974) noticed the existence of the so-called necklace vortices. Miyata 
(1980) advanced these studies and found the existence of a so-called free-surface shock 
wave. Waves in the near field of ships have many nonlinear characteristics with some 
similarity to nonlinear shallow-water waves and supersonic shock waves, such as the 
formation of a discontinuous steep wave slope. The nonlinear steep wave making is 
followed by the wave-energy-deficient phenomena of wave breaking and turbulence 
production, see Miyata & Inui (1984). 

The theoretical explanation of the generation of steep nonlinear waves is the 
problem we deal with in this paper, and the succeeding much more complicated 
energy-deficient phenomena will be postponed to a future investigation. A finite- 
difference method similar to the MAC method of Welch et al. (1966) seems to be most 
effective for this nonlinear free-surface problem, since the nonlinear free-surface 
condition can be fulfilled at the actual location of the free surface by use of an 
ingenious technique. In this paper another finite-difference simulation method called 
TUMMAC (Tokyo University Modified Marker-And-Cell) method is developed for the 
ship-wave problem by synthesizing many finite-difference techniques and by 
improving them to suit the three-dimensional problem of ships advancing on the 
free surface. In  the following sections, the computational method is described 
together with the complicated treatment of body boundary conditions, and the 
computed results are compared with experimental results and discussed. 

2. Computational method 
2.1. Solution procedure 

A ship is considered to be a fixed floating body placed in a uniform stream. The 
ship-wave problem is solved by computing the flow field around a ship. Since ship 
waves have many nonlinear characteristics, linearizing postulations must be avoided 
as far as possible. Therefore the Navier-Stokes (NS) equations are employed as 
governing equations. However, since we suppose that the viscous effects on both the 
free surface and body surface are safely neglected for free-surface waves of ships, 
inviscid boundary conditions are imposed on these boundaries. In most cases the 
viscous term of the NS equations can be ignored by setting the kinematic viscosity 
at zero. Hence in reality the Euler equations are used, while the solution procedure 
is explained by the NS equations. 

The basic concept of the solution algorithm is similar to the MAC method developed 
by Welch et al. (1966) and its improved version by Hirt & Nichols (1981). The 
momentum and continuity equations are represented in finite-difference form and 
solved through the solution procedure for an initial and boundary-value problem. For 
the computation of ship waves the water flow is accelerated from the rest condition 
by time marching until a steady state is reached after the flow acceleration has ceased. 

A Cartesian coordinate system is employed, in which the x-axis is parallel to a ship 
centreline, its origin being at the forward end of a ship, the y-axis is oriented trans- 
versely, and the z-axis is oriented vertically, positive upward. The undisturbed free 
surface is the plane at  z = 0, and the ship advances in the negative x-direction. A 
staggered semi-variable mesh system is used. Dimensions of each rectangular cell are 
DX, DY, and DZ in the x, y, z directions, respectively, and DX and D Y are common 
to all the cells, while DZ varies with respect to the z-coordinate. DZ is smallest near 
the free surface where the velocity gradient may be greatest. Velocities are defined 
on six surfaces of a cell and pressure at the centre of a cell, as shown in figure 1. 
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FIGURE 1. Staggered mesh system. 

The NS equations are represented in a finite-difference form by forward differencing 
in time and centred differencing in space except for the convective terms: 

where 

k1 + Ut+4.5. k+ l+Ui+f , j ,  k-1- 2Ut+?j,5, 
DZf i (2) 

Here u, v ,  w are velocity components in the x, y, z directions, respectively, and Y 
is pressure divided by the density of water. DX, D Y, DZ, are the spacing of velocity 
and pressure points in each direction, namely the dimensions of a cell, and DT is the 
time increment. Subscripts i ,  j ,  k are used for the x, y, z locations, respectively, and 
superscripts for time level. The superscript n is usually dropped. In (2) UC, VC and 
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WC are convective terms in finite-difference form more fully described in $2.2,  and 
v is the kinematic viscosity. 

By use of the continuity equation the following Poisson equation for pressure is 
derived : 

where 

and DZk,i  = +(DZk+DZk*, ) .  (5) 

Since variable mesh spacing in the z-direction is used, (3) is a little complicated and 
the degree of accuracy of the above finite-difference approximation of the Poisson 
equation is lower than the case of constant spacing. However, the overall accuracy 
of the solution may be increased by allotting very fine cells where fluid motion is most 
important, as will be demonstrated below. 

Equation (3) is iteratively solved by a simultaneous iterative method through the 
following equation, which is in a simplified form assuming that the vertical spacing 
DZk varies linearly : 

where 

Here, superscripts denote iterative number and o is a relaxation factor. D is the 
divergence of a cell as defined above. 

A t  every time step the pressure field is determined from the fixed velocity field 
under various boundary conditions. The new pressure field gives a new velocity field 
by advancing one time step using ( 1 ) .  The free-surface configuration is derived from 
the movement of marker particles located on the free surface. The time marching is 
advanced until a steady state is reached. 

2.2 Finite differencing of the convective term and stability considerations 
For the finite-difference representation of the convective terms UC, VC and WC, a 
combination of second-order upstream differencing (donor-cell method) and centred 
differencing is employed following Hirt, Nichols & Romero (1975). The second-order 
error of the donor-cell method that causes numerical dissipation is compensated by 
the same-order error of the centred differencing with opposite sign that causes 
numerical instability. 

The z-directional convective term UC at i+& for instance, is written as 

(u2)i+l,j, k -  (U2) t ,  3,  k (uv)i+&j+:,  k -  (uv)i+:, 1-i. k 

D Y  + 
uct+i, 1, k = DX 
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The first term, for instance, is calculated from the equation : 

33 1 

+a{lui+i,j,k+ Ui+f ,5 ,k1(ui+-f ,3 ,k-  U i + & j , k )  

- I U i - & j , k +  Ui+&j ,k l  (%- - f , j , k -  U i + - f , j , k ) } l *  (9) 

Here a is a combination factor; for centred differencing a = 0, and for the donor-cell 
method a = 1. 

Since a variable-mesh system is used, the space differencing is not equivalent to 
the centred differencing nor the donor-cell method in a strict sense. Therefore the 
degree of accuracy is lowered by the variable-mesh system. However, by the 
employment of locally very fine cells the overall accuracy can be increased as 
demonstrated below. 

For the stability consideration Neumann’s method (Roache 1976) is used after 
linearizing the convective and diffusive terms and dropping the pressure-gradient 
terms together with the gravitational term of the NS equations. Then the approximate 
condition is obtained as follows: 

(C,+C,+C,)2 < a(C,+C,+C,)+2(d,+dg+d,) < 1 .  

c, = - c, = - 

a, = - 

(10) 

Here C,, C,, C, are Courant numbers and d,, d,, d ,  are diffusion numbers defined as 

D T v  DT w 

(11)  
DT u 
DZ2 ‘ 

d, = - 

(12) 

D T u  
D X ’  

D T u  D T u  
DX2 ’ 

Equation (10) is separated to give 

d,  = - 
DY2 ’ 

(C,+C,+C,) < a < 1, 

1 - a(C, + C ,  + C,) 
2DT( 1 / D X 2  + 1 / D  Y2 + 1 /DZ2)  . l J <  

Equation (12)  gives conditions for the combination factor and Courant number, 
and (13)  the upper limit of the kinematic viscosity. Since these stability conditions are 
based on gross assumptions, they are approximate necessary conditions, and they 
do not always guarantee the stability of solutions. In  fact instability of solution often 
occur on the body surface and the free surface where nonlinear fluid motions are 
initiated. To secure real stability careful treatment is necessary there, as will be 
described in the next section. 

2.3. Approximation of ship hull confiuration 
An arbitrary three-dimensional body boundary condition is developed here in the 
framework of the rectangular-cell system. The alternative is the employment of a 
body-fitted coordinate system, in which the implementation of body boundary 
conditions is attained without difficulty. A body-fitted coordinate system has been 
successfully used many times, especially in two-dimensional problems. However, in 
the present three-dimensional flow problem that contains a free surface its employment 
may give rise to some difficulties. For instance, the coordinate transformation needs 
to be conducted at every time step owing to the deformation of the free-surface 
configuration. 
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Y- 

FIGURE 2. Simplification of body configuration and flagging. 

The employment of a fixed rectangular-cell system concentrates the difficulties of 
the solution procedure on the implementation of body boundary conditions. For the 
computation of fluid motion on the very complicated body configuration of a ship 
some simplification is necessary. A ship body is made of horizontal curves in 
(2, y)-planes (waterlines) and vertical curves in (y, z)-plmes (framelines). The former 
require more careful treatment than the latter, since they are more sensitive to wave 
resistance. A waterline is approximated by a succession of straight segments as shown 
in figure 2. The waterline on the horizontal plane that contains the centres of cells 
is used to determine the segments, and the vertical variation of frameline within a 
cell height is ignored. Then the body surface comprises vertical and horizontal plane 
panels. 

All the cells are flagged and classified into full-of-fluid cells (F-cells), body boundary 
cells (B-cells) and empty cells (E-cells). A B-cell is a cell (i) that contains both fluid 
and body, (ii) that contains a fluid portion of more than a quarter of the cell volume, 
and (iii) that has at least one velocity not determined by (1). An F-cell neighbouring 
B- and E-cells is sometimes defined as B-cell so that B-cells are continuously 
distributed along' waterlines, even though the above condition (i) is violated. Some 
examples of flagging are shown in figure 2. The cell denoted K is a body boundary 
cell, in which one vertical velocity is set at zero and so the other complicated 
procedures for a B-cell are not necessary. 
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E 

E 

FIGURE 3. The B-cells on horizontal plane: 0 A, velocity facing 
B/F-cell; 0 A, velocity facing E-cell. 

Kca%?=O 1 2 3 

FIGURE 4. The B-cells on vertical plane: 0,  velocity facing B/F-cell; m, velocity facing E-cell. 

A B-cell has six neighbouring cells, either F-, B- or E-cells. The procedure to fulfil 
the body boundary conditions in a B-cell depends on the kind of neighbouring cells, 
since an E-cell does not have pressure and the velocity on the plane facing an E-cell 
cannot be computed by momentum equations. Then each B-cell is classified into 
nine horizontal cases shown in figure 3 and four vertical cases shown in figure 4. The 
velocities shown as black marks are not normally computed. 

2.4. Body boundary condition 
It is possible to apply a free-slip body boundary condition, since the cell size cannot 
be so small as to resolve viscous motion in a boundary layer. The Reynolds number 
that corresponds to the model ship length and its speed of advance is greater than 
108. For a free-slip condition the following must occur: (i) the velocity normal to a 
body surface is zero ; (ii) the tangential velocity does not have normal gradient ; and 
(iii) the divergence of a B-cell is zero. 

The procedure to fulfil the above three conditions is explained here for the most 
typical case when I case = 5 and K case = 0. The body configuration is simplified 
so that the body surface is made of vertical and horizontal plane panels as seen in 
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k - 2  

FIGURE 5. Simplified body surface and velocity points of w. 

figure 5 .  Then the velocity normal to the body surface is either horizontal or vertical. 
The horizontal normal velocity is set at  zero through adjustment of the pressure 
in the B-cell and surrounding cells by iteration, and the vertical normal velocity is 
set either at  zero or given a certain value depending on the area ofa  horizontal plane 
of the B-cell across which fluid can pass vertically. 

In the course of solving the Poisson equation iteratively the following equation is 
used instead of (6) for an F-cell, following Viecelli (1971): 

Here, Vp and n are the fluid velocity vector at the centre of the segment and a unit 
outward normal vector of a segment respectively, as shown in figure 6. IS  is a mesh 
parameter and taken to  be l /DX+l/DY+l/DZ,.  Equation (14) shows that the 
horizontal normal velocity becomes zero when the pressure converges. Simultaneously 
the zero-divergence condition of the fluid portion of the B-cell is attained when the 
divergence of the full volume of the B-cell is set at  zero since fluid does not move 
across the segment. 

Two velocities V l  and U2 in figure 6, which are not determined by momentum 
equations, are set so that the zero-divergence condition of the full volume of the B-cell 
and the condition of no gradient of tangential velocity are fulfilled. They are set as 
follows in the iterative process of adjusting pressure : 

U 2 =  U l + a ,  V1 = V2+b,  (15) 

where = 0. a b W 2 . S F 2 -  W1.  SF1 
DZ -+-+ DX DY 
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FIGURE 6. Definition sketch for body boundary condition on horizontal plane. 

Here, W1 and W2 are vertical velocities on lower and upper surfaces of the B-cell 
and SF1 and SF2 are dimensionless areas of the fluid portion of the surfaces, across 
which fluid can vertically pass. The values of additional velocities a and b are 
determined by the zero-divergence condition expressed in (15) and (16) and the 
additional condition that the velocity which a and b induce at the centre of the 
segment is normal to the segment. Thus, the zero-divergence condition and no- 
normal-gradient-of-tangential-velocity condition are approximately satisfied in the 
iterative procedure. 

2 5. Free-eurface condition 
The free-surface condition is also most important in the nonlinear free-surface 
problem of ship waves. Let the location of the free surface be z = g, and then the 
inviscid free-surface conditions on this location are 

Y =  Yo, (17) 

Here Yo is the atmospheric pressure Po divided by the density of water. Equations 
(17) and (18) are the dynamic and kinematic conditions respectively, and they are 
exact when the viscous stress and the surface tension on the free surface are neglected. 
They are safely assumed to be zero in the present high-Froude-number-flow problem. 

For the fulfilment of condition (17) the 'irregular star' of Chan t Street (1970) 
is used. It is another finite-difference representation of the Poisson equation with 
variable spacing, i.e. rl-qS as follows: 

Here Yl-Y6 are the pressures at the end of the six legs y1 to qS, respectively. When 
the free surface is closer to one pressure point than the neighbouring pressure point, 
the pressure is set at Yo and the leg length is the distance to the free surface. Thus 
the computation of pressure in cells near the free surface by (19) is continued from 
the normal pressure computation at each iterative step. 

The kinematic condition (18) is fulfilled by the use of marker particles on the free 
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boundary 

FIQURE I. Definition sketch for the treatment of a boundary cell containing a free surface. 

surface. The marker particles move in a Lagrangian manner and their new location 
gives the new free-surface configuration. Only one marker particle is allotted to each 
free surface cell. The initial location of marker particles is iteratively calculated so 
that the new location is straight above the centre of the cells. This is convenient for 
determining and drawing the new wave configuration on an (2, y)-plane. 

In  most of the solution procedures for body-wave interaction problems the 
singularity at the intersection of the free surface and the body surface gives rise to 
analytical difficulties and sometimes it is the cause of instability of the solution. 
Special consideration is often necessary here in order to have a satisfactory stable 
solution. For example Lin, Newman & Yue (1984) recently discussed this problem 
in the computation of waves generated by a wavemaker using a boundary-element 
method . 

In  the present method a special treatment is introduced in the pressure computation 
of a boundary cell that contains a free surface. The pressure Yk+, of the cell above 
such a B-cell, shown in figure 7, is linearly extrapolated from Yk of the B-cell and 
zero-pressure Yo on the free surface so that the velocity w on the upper surface of 
the B-cell is evaluated. Also, in the computation of v k  by an iterative solution 
procedure for the Poisson equation the relaxation factor w is reduced taking into 
account the distance between the points and Yo in figure 7, see Nichols & Hirt 
(1971). Assume that this vertical distance is s ;  then the reduced relaxation factor w' 
is derived as 

4w 
4-~w(l-DZ/s)'  

w' = 

Other computations are performed in the same manner with a normal B-cell. The 
above procedure is necessitated by not only the singularity at the intersection but 
also the geometrical irregularity of a cell that contains both a free surface and a body 
surface, which is because of the inflexible rectangular-cell system. To secure the 
stability of the solution these special treatments are necessary : without them the 
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FIQURE 8. Computational domain and boundaries. 

divergence of the solution occasionally emerges from the body surface. The above 
approximate treatment may influence the accuracy of the solution. However, the 
error due to this approximation can be reduced by using a fine cell division near the 
free surface. 

2.6. Other boundary conditions 
The computational domain is bounded by a centreplane boundary, an inflow 
boundary, a bottom boundary, a side boundary, an outflow boundary, a body 
boundary and a free surface as seen in figure 8. 

The centreplane bisects the cells in which pressure is first renewed. Symmetry 
conditions for pressure, velocity v and convective term r] are imposed as 

FUs, 1, k = y*, 3, k, (21 a) 

(21 b )  
(2 1 4 

%, i, k = -'Us, i, k, 
r ] t , i , k  = -r]*,t, k' 

A t  the inflow boundary a uniform distribution of u is imposed. This is easily 
accepted when the disturbance due to a ship is scarcely noticeable at the inflow 
boundary. The bottom boundary is usually so deep that the fluid motion is very 
gentle. Then, hydrostatic pressure is given there, and velocity w is computed through 
the momentum equation and the zero-divergence condition. 

The condition at the open boundary is also important. It is usually considered that 
the strict implementation of this condition is very difficult, and a number of studies 
have been done to improve its numerical treatment. An improper condition gives rise 
to unfavourable results, such as wave reflection or divergence of the solution at the 
open boundary. 

There are two open boundaries on which a radiation condition must be satisfied. 
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At the side boundary all the variables are set equal t o  the inner values so that their 
gradient in the direction normal to  the boundary is zero. At the rear open boundary 
their gradient along the local flow direction is set a t  zero. These simple conditions 
work well, partly attributable t o  the transportive property of the donor-cell method. 

3. Computed results 
3.1. Condition of computation 

Three ship models with a three-dimensional configuration were chosen for the 
computation. One is a simple mathematical model called Wigley’s hull, the surface 
of which is made of parabolic curves as defined by 

y = i B  { 1 - (Fy} { 1 - (i)’}. 
Here L, B and d are ship-model length, breadth and draught (depth below the 
undisturbed free surface), respectively. The other two are practical ship models of 
a bulk carrier of 26000 deadweight tonnage which is equipped with a bow bulb and 
a tanker of 200000 deadweight tonnage which has a normal bow form without a bulb, 
named M55FO and M57FO respectively. Only the lightly loaded condition (ballast 
condition) is considered for M55F0, while both ballast and full-load conditions are 
considered for M57FO. The principal characteristics of the three ship models are listed 
in table 1. 

I n  order to ascertain the effect of cell size on the accuracy of the solution some 
numerical tests were performed with the fore part of the Wigley’s hull a t  Fn = 0.289. 
The results are shown in figure 9 in the form of a wave contour map. I n  case (a) where 
the longitudinal spacing DX is 2 %  of ship length the waves are significantly 
attenuated, having inadequate maximum wave height, namely only about 65 yo of the 
measured value. I n  case (b) where DX is reduced to 1 % of ship length the outward 
extension of wave contours and the wave formation behind the wave crest are still 
insufficient in comparison with the experimental result shown in figure 14, although 
the maximum wave height almost reaches the experimental value. The use of the 
variable-mesh system in the vertical direction with a very fine cell spacing near the 
free surface considerably increases the accuracy, as seen in case ( c ) .  

By further reducing the cell size improvement of accuracy tends to be considerably 
reduced and eventually ceases, as is described in 83.2 and figure 15. By rule of thumb 
the horizontal spacing of a cell must not be greater than 1 yo of ship length for the 
present method. Numerical tests show that for ship models where the waterline 
curvature is concentrated on the fore and aft parts, with a long parallel middle body 
such as M55FO and M57F0, the horizontal spacing must be smaller than 1 yo of ship 
length, but it should not be smaller than 0.5 yo from an economical point of view, since 
the improvement in accuracy is small. 

The computation conditions are listed in table 2. Only the fore parts of the ship 
models are considered for the Wigley’s hull and M57F0, but the full length of the 
model is considered for M55FO. One Froude number is chosen for each ship model: 
a relatively high one for the very fine hull form of the Wigley’s hull and one that 
corresponds to their operation speed for the two practical hull forms. Since the wave 
elevation by M57FO a t  a very low Froude number is expected to  be much smaller 
than by M55FO that advances at a higher Froude number, the cell size for M57FO 
is taken to be smaller than M55FO. An exceptionally small cell size is used for the 
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Name of hull Wigley’s hull M55FO M57FO 

Type of hull Horizontally Practical Practical tanker 
and vertically bulk 

parabolic carrier Ballast Full-load 

Length L (m) 2.500 3.000 2.800 

Breadth B (m) 0.250 0.497 0.509 

Draft d (m) 0.156 0.090 0.0663 0.1664 

Computed 0.289 0.180 0.150 
Froude number 

TABLE 1. Principal particulars of ship models 

Wigley’s hull to discover the ultimate degree of accuracy that would be attained by 
the present method. 

The spacing in z-direction DZ is variable. It is linearly decreased from the bottom 
of the computational domain to the undisturbed free surface 8,s seen in figure 11. 
Above the undisturbed free surface DZ is constant. For the consideration of the 
stability conditions expressed by (12) and (13) the smallest DZ is used. Some drawings 
of cell division are presented in figures 10 and 11 for the Wigley’s hull, in figures 
17 and 18 for M55FO. 

The kinematic viscosity is set at zero or the actual value but the difference is 
assumed to be negligibly small, since a free-slip body boundary condition is employed 
and the diffusion terms are expected to influence the waves only very slightly. 

3.2. Computed results 
The time-evolutional development of waves around the fore part of the Wigley’s hull 
is shown in figure 12, and the perspective view of wave configuration at the final 
steady state is in figure 13. The wave height is made dimensionless by the water head 
of uniform stream H, equal to u2/2g. The velocities in the computational domain are 
uniformly accelerated for 500 time-steps from zero to 1.429 m/s. 

The computed wave-contour map at the completely steady state is compared with 
measurements in figure 14. The fluctuations of the measured oontours are presumably 
attributable to the error in measurement and to the inadequate contour plotting 
program. The agreement is satisfactory especially in the angle of wave crest. 
However, it is also noted that the computed waves show attenuation in wave height 
in the region far from the body surface, which is presumably caused by numerical 
dissipation. The computed wave profile on the body surface is compared with 
measurements in figure 15. Since the modified Rankine source method proposed by 
Dawson (1979) which applies a linearized free-surface condition is considered to be 
one of the most successful methods, it was recently used by Ogiwara (1983) for a 
Wigley’s hull and the computed wave profile is shown in figure 15. However, the 
superior accuracy of the present method is obvious. In  spite of the Wigley’s hull 
having a very fine configuration which should result in insignificant nonlinearity ‘of 
the waves a theory that linearizes the free-surface condition does not give satisfactory 
agreement. This seems to imply that implementation of the nonlinear free-surface 
condition is of importance for the evaluation of ship waves and wave resistance. The 
computed result with a somewhat coarser cell system is also shown in figure 15. It 
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FIQURE 9. Effect of cell size on wave-contour map of the forebody of a Wigley’s hull a t  Fn = 0.289: 
(a) DXx DYx DZ = 50x l o x  31.2 mm; (b) 25 x l o x  31.2 mm; (c) 25x l o x  8.9 - 58 mm. 

is noted that the improvement of the degree of accuracy by the reduction of grid 
spacing from 25 mm to 10 rnm is rather slight. The degree of accuracy of the present 
method stops improving when the spacing approaches 0.5% of ship length. The 
fluctuation of the computed wave profile on the crest seems to be due to numerical 
instability, but it has negligible influence since it is restricted to a small region. 

Velocity-vector fields of velocity components on two (y, 2)-planes are shown in 
figure 16. The present finite-difference method gives, as a matter of course, solutions 
of all the velocity components and pressure over all the computational domain, and 
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Name of hull 

Domain of computation 
Length (m) 
Breadth (m) 

Depth (m) 

Cell size 
DX (mm) 
D Y (mm) 

DZ (mm) 

Approximate number 
of used cell 

Time increment DT (s) 

Time steps for acceleration 

Total time steps 

Combination factor a 

Relaxation factor w 

Kinematic viscosity v (m2/s) 

Froude number Fn 
Speed of advance (m/s) 

Wigley's hull 

0.850 
0.350 

0.313 

10 
7 

6.3 - 35.4 

59000 

0.00 164 

500 

800 

0.5 

1.5 

0 

0.289 

1.429 

M55FO 

4.480 
0.900 

0.393 

20 
20 

12 - 42 

100000 

0.00461 

300 

600 

0.5 

1.5 

1.139 x 

0.180 

0.976 

TABLE 2. Conditions of computation 

m57f0 

Ballast Full-load 

1.122 
0.495 

0.210 0.393 - 
16.5 
16.5 

.A 
f 'I 

7.4 - 25.1 8.2 - 44.1 

29000 33 000 

0.00338 0.00423 - 
300 

800 

0.5 

1.5 

0 '  

0.150 

0.786 

K = 10,z = -0.06042 m 

FIGURE 10. Cell division of the forebody of a Wigley's hull on a (2, y)-horizontal plane. 

this output can be utilized in many ways. The computational time (CPU time) was 
about 3 hours using a super-computer HITAC S-810/20. 

The cell division of the practical ship form M55FO in a lightly loaded condition is 
shown in figure 17 for the body surface and in figure 18 for a horizontal plane. 

The computed wave-contour map at a steady state is shown in figure 19 (a).  Since 
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1 = 5 1 , x =  0.2500m I = 76, x = 0.5000111 

FIGURE 11. Cell division of the forebody of a Wigley’s hull on two (y, z)-vertical planes. 

the ship model M55FO has a long parallel middle body, wave generation is concentrated 
near the two ends of the model. The details of bow and stern waves are shown in 
figure 19(b) ,  ( c )  with smaller interval of contours. The foremost wave is most 
dominant showing steep wave slope, and the second crest has much smaller height 
and smaller angle of wave crest to the centreline. A steep wave is also generated from 
the rear end of the model, and i t  is spread to  the rear far field by dispersion. Despite 
the complexity of the computed bow-wave system owing to the complicated body 
configuration with a bow bulb, the agreement with the measurements, shown in 
figure 20, is good. The computed wave profile on the hull surface of M55FO is 
compared with t,he measured one in figure 21. The agreement is not so good as in the 
case of the Wigley’s hull. I n  particular, the difference of phase and configuration of 
the second wave crest is noticeable. I ts  measured profile is somewhat similar to  that 
of a deepwater bore having a small steep forward face, whereas the slope of the 
computed wave crest is much gentler. As is noted from the fact that the maximum 
wave height is about 80 Yo of the water head of the uniform stream, the nonlinearity 
of waves is much more conspicuous on this practical ship model having a complicated 
hull form with a blunt bow bulb. The approximate fulfilment of the exact free-surface 
and body-surface conditions of the present method seems to  affect the solution of this 
case more significantly than the case of the very fine Wigley’s hull. 

Computed velocity-vector fields on vertical (y, 2)-planes are shown in figures 22 ( a )  
and (b ) .  Flow fields of the forebody are in figure 22(a) and of the afterbody in 
figure 22(b). Beneath the forebody a vortical motion of clockwise rotation appears 
and behind the afterbody one of anti-clockwise rotation. This vortex generation 
indicated by the present computation is in good qualitative agreement with the actual 
flow field. However, since a free-slip body boundary condition is employed in this 
computational procedure, i t  may be considered that these vortical motions are due 
to  some numerical inaccuracy, despite the apparent agreement with experiment. The 
CPU time for this computation was about 4 hours and 50 minutes using a HITAC 
S-810/20, as the number of cells in which pressure is computed is about 100000. 

The draught of the practical ship model M57FO is divided into 6 cells on ballast 
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FIGURE 12(a). For caption see next page. 

condition and 9 cells on full-load condition. Although the depth of the computational 
domain and the variation of cell spacing in the vertical direction is quite different 
between the two draught conditions, the cell spacing near the free surface and the 
total cell number are not very different, see table 2. 

Although the Froude number based on the ship length F n  is common to the two 
conditions, the wave formation near the bow shows a remarkable difference as 
observed in figure 23, owing to the dependence on the Froude number based on 
draught, the importance of which is demonstrated by Miyata & Inui (1984). The 
pictures show that the forward face of the foremost wave is steeper and breaking 
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FIGURE 12. Time evolution of wave-contour map of the forebody of Wigley’s hull (a) 200th, 300th 
and 400th time step from above. The interval of contours is 0.02H (= u2/2g). (a) 500th, 600th 
and 700th time step. The uniform stream velocity is accelerated till the 500th time step, Fn = 0.289. 

motions are obvious with the ballast condition, and that the second wave crest is 
generated only with the ballast condition. Waves are relatively gentle with the full- 
load condition. These qualitative differences in wave formation between the two 
draught conditions, except for the breaking motion, are well simulated by the present 
method as seen in the computed perspective views in figure 24. 

The computed wave-contour maps at two time levels are compared with the 
measured ones in figure 25 for the ballast condition and in figure 26 for the full-load 
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FIGURE 13. Perspective view of waves around the forebody of 
a Wigley’s hull at Fn = 0.289, 700th time step. 

-0.125 0 0.125 0.250 0.375 0.500 0.625 

0.250 

0.125 

0 
-0.125 0 0.125 0.250 0.375 0.500 0.625 

x (m) 

FIGURE 14. Comparison of (a) computed (800th time step) and (b )  measured wave-contour maps 
of the forebody of a Wigley’s hull at Fn = 0.289. The interval of contours is 0.02H. 

condition. The overall agreement is fairly good. It is noted that the degree of 
agreement for the full-load condition is more satisfactory than for the ballast 
condition. The computed maximum wave height of the foremost wave crest around 
the fore end is slightly higher than the measurement for the ballast condition, while 
it is slightly lower for the full-load condition. 

In order to examine the discrepancy between computation and measurement in 
detail some wave profiles are compared in figures 27 and 28 for ballast condition and 
in figures 29 and 30 for full-load condition. The wave profiles were measured by a 



FIGURE 15. Comparison of wave profiles on the hull surface of the forebody of a Wigley’s hull at 
Fn -- 0.289; -, measurement; --0--, present computation (DX x DY x DZ = 10 x 7 x 6.3 
,., 35.4 mm); , computation with a little coarse cell (DX x D Y x DZ = 25 x 10 x 8.9 
N 58 mm); ---, modified Rankine source method by Ogiwara (1983). 
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4.0 

FIGURE 19. (a) Wave-contour map of M55FO at Fn = 0.180, steaxly state at the 600th time step. 
The uniform stream is accelerated for 300 time steps. The interval of contours is 0.05H. ( b )  Details 
of bow waves. The interval of contours is 0.02H. Positive values are contoured by solid isopleths 
and negative values by dashed contours. (c) Details of stern waves. The interval of contours is 0.02H. 

PLM 157 12 



348 

Y (m) 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

H .  Miyata and S. Nishirnura 

0.6 
x (m) 

FIGURE 20. Measured wave-contour map of M55FO at Fa = 0.180. The contour interval is 0.05H. 
Positive values are contoured by solid isopleths and negative values by dashed contours. 
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FIGURE 21. Comparison of wave profiles on the hull surface of the forebody of M55FO at 

Fn = 0.18: -, measurement; --0--, present computation. 

contact-type wave recorder and the records from a pen-recorder are reproduced here. 
It is noted that the discrepancy for the ballast condition is most conspicuous where 
the wave profiles have high-frequency fluctuations and that these wave profiles with 
fluctuations show a jump-like shape which is considered to be some consequence of 
wave breaking. On the other hand the measured wave profiles for the full-load 
condition show a very small discrepancy, having gentler slope and relatively 
lower-frequency fluctuations which are attributed to the presence of capillary waves 
riding on the wave face and to the error in measurement. These comparisons indicate 
that the discrepancy is attributable not only to the numerical error but also to the 
breaking phenomenon which the present method cannot simulate. 
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FIQURE 22. Velocity vector field on (y, 2)-vertical planes, Fn = 0.180, at 
(a) x = 0 m and 0.3 m from above, (b)  2.7 m and 3.0 m. 
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FIGURE 23. Bow-wave pictures of M57FO at Fn = 0.15, 
(a) ballast condition, ( b )  full-load condition. 

The discrepancy in the formation of the second wave crest for the ballast condition 
seen in figure 25 is remarkable. Since wave breaking obviously occurs on the foremost 
wave crest at this higher Froude number based on draught, the flow field behind the 
breaking wave is assumed to be under the influence of the complicated free-surface 
motions caused by breaking involving free-surface turbulence. The inadequate 
agreement of the second wave is, at least partly, attributed to this secondary influence 
of the breaking phenomenon. 

The CPU time was about 40 minutes for each condition. This is remarkably reduced 
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V 

FIGURE 24. Perspective views of computed bow waves of M57FO at Fn = 0.15, 800th time step, 
(a) ballast condition, (b)  full-load condition. Wave height is four-times magnified. 

in comparison with the aforementioned cases, mostly owing to the improvement of 
the optimization level of the compiler of the super-computer HITAC S-810/20 and 
to the reduction of iteration number in the solution procedure of the Poisson equation 
for the pressure. 

3.3. Discussion 

Fluid flow experiences abrupt changes in velocity and pressure near the ship body 
and this causes wave making. For a ship with a blunt bow at a certain high Froude 
number this change is so abrupt that steep waves are generated. They are usually 
the source of breakers and free-surface turbulence. In  the region near the fore end 
of a ship where these waves are generated the linearizing assumption ceases to be 
valid, since the disturbance velocity by a ship approaches the value of the uniform 
stream with opposite sign and the wave height approaches the water head of the 
uniform stream. Therefore a numerical method of this kind will be particularly useful 
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FIGURE 25. Comparison of computed and measured bow-wave contour maps of M57FO on ballast 
condition at Fn = 0.15, (a) computed, 600th time step, ( b )  computed, 800th time step, (c) measured. 
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FIQURE 26. Comparison of computed and measured bow-wave contour maps of M57FO on full-load 
condition at Fn = 0.15, (a) computed, 600th time step, (b )  computed, 800th time step, (c) measured. 
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J 1.0 

FIGURE 27. Comparison of wave profiles on the centreline of M57FO on ballast condition at  
Fn = 0.15: -. measured; ---, computed, 800th time step. 

/’ .’ 

x = O . I m  

0.4 

FIGURE 28. Same as figure 27, on two lateral lines. 

in explaining waves around bows of low- and middle-speed ships with blunt bow 
configurations, since their bows are surrounded by water flow with large disturbance 
velocities and high wave elevation. 

The computed waves of three hull forms show fairly good agreement with 
experimental results as demonstrated in the contour plots and the wave profiles. 
Although the approximate treatment of the body boundary condition within the 
framework of an inflexible rectangular-cell system is one of the shortcomings of this 
kind of method, the use of the variable-mesh system and the hybrid finite-differencing 
of the convective terms seems to be successful in overcoming the inaccuracy. The 
present method is expected to be effective for the development of improved hull forms 
having smaller wave resistance. However, further efforts should be made to increase 
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FIGURE 29. Comparison of wave profiles on the centreline of M57FO on full-load condition at 
Fn = 0.15: -, measured; ---, computed, 800th time step. 
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FIQURE 30. Same as figure 29, on two lateral lines. 

the accuracy by improving the finite-difference scheme and by taking into account 
the more complicated nonlinear physical phenomena. 

As is usually observed in a laboratory basin or in real oceans, ship waves in the 
near field are likely to break and free-surface turbulence occurs involving air 
entrainment. The characteristics of nonlinear ship waves in the vicinity of a ship have 
been experimentally studied by Miyata (1980) and Miyata & Inui (1984). The typical 
characteristics are (i) steepness of wave slope, (ii) systematic change of the angle of 
wave-crest line depending on Froude number, (iii) formation of lines of discontinuity 
sometimes with spilling or plunging breakers, (iv) turbulence generation on the wave 
crest and (v) dissipation of wave energy into momentum loss far behind. Because their 
characteristics and appearance are very similar to nonlinear shallow-water waves 
with discontinuity, the waves are called free-surface shock waves. The present 
computational method has, it is hoped, succeeded in explaining the characteristics 
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in the stages before energy-deficient phenomena take place. The simulation of 
breaking waves taking into account the free-surface turbulence will be the aim of 
future investigations. 

Discussion of the comparison of predicted and measured values of the wave 
resistance coefficient has been avoided in this paper because the waves from the aft 
body and the pressure on the aft body owing to the waves are under the influence 
of the interaction of waves with a boundary layer and its separation, which cannot 
be interpreted by the present numerical method that employs a free-slip body 
boundary condition. Besides, wave resistance is very delicately evaluated by 
subtracting the high pressure on the aftbody from that on the forebody, that is, 
through cancellation of integrated pressure of the same order. In  the test computation 
of the full length of the Wigley's hull, which is not included in this paper, the wave 
resistance coefficient made dimensionless with respect to the wetted-surface area is 
1.259 x The discrepancy 
is rather small for this fine hull form, on which the boundary-layer separation is not 
very conspicuous. However, for the full hull form M55F0, the predicted value is 
1.747 x at Fn = 0.180. In  the flow field 
in the vicinity of the aft body the role of viscosity is important, and therefore a 
further advanced numerical method, that solves both wave motion and viscous 
boundary-layer motion simultaneously, must be developed to achieve satisfactory 
agreement in the values of resistance. 

at Fn = 0.289, while the measured value is 1.179 x 

while the measured value is 0.617 x 

4. Concluding remarks 
Ship waves that have markedly nonlinear characteristics are explained under 

inviscid nonlinear boundary conditions using a finite-difference method which is 
developed by synthesizing various techniques so far developed and developing new 
techniques that apply to the ship-wave problem in which the interaction of a uniform 
stream of large magnitude with a complicated configuration of hull form is of 
importance as well as the free-surface deformation. 

The present finite-difference simulation method seems to have succeeded in 
explaining the generation of steep nonlinear waves before breaking. It can partly take 
the place of the experimental basin by using computer simulation of waves of 
forebodies of ships to discriminate a better hull form of smaller wave resistance from 
a series of configurations. For the establishment of a complete computational basin 
a lot of numerical techniques must be developed in order to explain breaking motion, 
viscous turbulence, ship motion and so forth. 

The computations were undertaken by the super-computer HITAC S-810/20 of the 
Computer Centre, the University of Tokyo. 
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